Molecular Regulation of Embryo Development in Norway Spruce Polar Auxin Transport and Transcription Factors

نویسنده

  • Emma Larsson
چکیده

Early events in embryo development are critical for the plant body formation. During this phase the apical-basal axis, the radial symmetry, and the primary meristems are specified. The shoot apical meristem (SAM) and the root apical meristem (RAM) will subsequently give rise to all above-ground and below-ground tissues. Despite the environmental and economical importance of conifers, the regulation of their embryonic development is still relatively unknown. We are using somatic embryos of Norway spruce as a model system for studying embryology in conifers. In this thesis, I show that polar auxin transport (PAT) is essential for proper patterning of both apical and basal parts of conifer embryos. Blocked PAT caused increased auxin levels, increased differentiation of early somatic embryos, a skewed balance between the embryonal mass and the suspensor cells in late embryos, and an abnormal morphology with irregular RAM, fused or aborted cotyledons and absence of a functional SAM in mature embryos. Two NAC gene family members (PaNAC01 and PaNAC02), closely related to the Arabidopsis CUP-SHAPED COTYLEDON (CUC) genes, were characterized. PaNAC01 harbors previously characterized functional motifs, and could complement the cuc1cuc2 double mutant. The temporal expression of PaNAC01 was dependent on PAT, and coincided with the formation of separated cotyledons and a functional SAM. Furthermore, the expression profiles of four KNOXI genes (HBK1 to 4) showed that also the expression of HBK2 and HBK4 depend on PAT, and indicated their role in embryo differentiation and SAM formation, while HBK1 and HBK3 seemingly have a more general role during embryo development. In addition, a global gene expression analysis revealed important processes during early somatic embryogenesis in Norway spruce. Taken together the results show that central parts of the regulatory network for embryo development are still conserved between angiosperms and gymnosperms, despite their separation 300 million years ago.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NAC regulation of embryo development in conifers

Background In most gymnosperms the cotyledons develop as a crown surrounding the incipient shoot apical meristem (SAM), which maintains the radial symmetry of the plant throughout embryogenesis. This is in contrast to the Arabidopsis embryo in which a symmetry-breaking event (from radial to bilateral symmetry) is associated with the emergence of the SAM and the two cotyledons [1]. We have previ...

متن کامل

The polar auxin transport inhibitor NPA impairs embryo morphology and increases the expression of an auxin efflux facilitator protein PIN during Picea abies somatic embryo development.

Auxin and polar auxin transport have been implicated in controlling embryo patterning and development in angiosperms but less is known from the gymnosperms. The aims of this study were to determine at what stages of conifer embryo development auxin and polar auxin transport are the most important for normal development and to analyze the changes in embryos after treatment with the polar auxin i...

متن کامل

Endogenous Nod-factor-like signal molecules promote early somatic embryo development in Norway spruce.

Embryogenic cultures of Norway spruce (Picea abies) are composed of pro-embryogenic masses (PEMs) and somatic embryos of various developmental stages. Auxin is important for PEM formation and proliferation. In this report we show that depletion of auxin blocks PEM development and causes large-scale cell death. Extracts of the media conditioned by embryogenic cultures stimulate development of PE...

متن کامل

Expression of a gymnosperm PIN homologous gene correlates with auxin immunolocalization pattern at cotyledon formation and in demarcation of the procambium during Picea abies somatic embryo development and in seedling tissues.

In seed plants, the body organization is established during embryogenesis and is uniform across gymnosperms and angiosperms, despite differences during early embryogeny. Evidence from angiosperms implicates the plant hormone auxin and its polar transport, mainly established by the PIN family of auxin efflux transporters, in the patterning of embryos. Here, PaPIN1 from Norway spruce (Picea abies...

متن کامل

Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis

Somatic embryogenesis requires auxin and establishment of the shoot apical meristem (SAM). WUSCHEL (WUS) is critical for stem cell fate determination in the SAM of higher plants. However, regulation of WUS expression by auxin during somatic embryogenesis is poorly understood. Here, we show that expression of several regulatory genes important in zygotic embryogenesis were up-regulated during so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011